RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2016-19] B.A./B.Sc. FOURTH SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018

Date : 14/03/2018 Time : 2 pm - 4 pm

COMPUTER SCIENCE (Honours)

Paper : IV

Full Marks : 50

 $[4\times 5]$

[5]

[5]

[Use a separate Answer Book for each group]

<u>Group – A</u>

(Answer <u>any four</u> questions)

- Explain Bakery algorithm for solution to the critical section problem for n number of processes and show how it achieves mutual exclusion when any two processes request to enter their critical sections at same time. [3+2]
- 2. Consider the following set of processes that need to be scheduled on a single CPU. All the times are given in milliseconds.

Process Name	Arrival Time	CPU Execution Time
P1	0	5
P2	1	7
P3	3	4

Calculate average waiting time for these processes using Round Robin algorithm with time slice = 2 millisecond.

- Explain the internal details of exit() system call. [5] 3. What is the advantage of Inter Process Communication (IPC)? 4. a) [2] b) Differentiate between shared memory and message passing. [2] What is involuntary process termination? [1] c) Differentiate between CPU-bound process and I/O-bound process with example. 5. [2] a) b) Explain multilevel feedback queue scheduling. [3]
- 6. Explain how hardware interrupt is handled by operating system.

<u>Group – B</u>

(Answer <u>any three</u> questions) [3×5]

7.	a)	Define inherent ambiguity of a CFG.	[2]
	b)	Give the CFG for palindrome.	[3]
8.	a)	State and prove Arden's theorem.	[3]
	b)	Find out regular expression for the following transition diagram.	[2]

9.	a)	Convert the following grammar into C.N.F.	[2.5]
		$S \rightarrow bA \mid aB$	
		$A \rightarrow bAA \mid aS \mid a$	
		$B \rightarrow aBB \mid b$	
	b)	Convert the following grammar into G.N.F.	[2.5]
		$S \rightarrow ABb \mid a$	
		$A \rightarrow aaA \mid B$	
		$B \rightarrow bAb$	
10.	a)	Construct an NFA that accepts the language {01, 012*}	[2.5]
	b)	Define Mealy and Moore machine.	[1+1]

c) Define regular language.

<u>Group – C</u> (Answer <u>any three</u> questions) [3×5]

[0.5]

[5]
[2]
[3]
[3]
[2]

14. a) Perform BFS and DFS of the following graph :

	S denotes source vertex.	
b)	Explain differences between fractional Knapsack and 0/1 Knapsack problem.	[2]

_____ × _____